infronx-final-logo

A Comprehensive Guide to Modules in Python: Creating, Using, and Exploring Built-in Modules

Python, known for its simplicity and versatility, owes much of its power to its modular architecture. Modules in Python are essentially files containing Python code, which can be imported and used in other Python scripts. In this article, we will delve into how to create and use your own modules and explore some of the most commonly used built-in modules in Python. 

Table of Contents


Creating Your Own Modules in Python

Creating a Python module is a straightforward process. You simply write your Python code in a .py file, and that file becomes a module. Here’s a step-by-step guide to creating your own Python module: 

Write your Python code: Create a new .py file and write the Python code you want to include in your module. For example, let’s create a file named math_operations.py with the following code

# math_operations.py      

def add(a, b): 
    return a + b 


def subtract(a, b): 
    return a - b 


def multiply(a, b): 
    return a * b 

def divide(a, b): 

    if b == 0: 

        return "Division by zero is not allowed" 

    return a / b

Save the file: Save the .py file with an appropriate name, such as math_operations.py.


Import the module: Now, you can import the module in another Python script and use the functions defined in it. Here’s how you can do it:

# main.py 

import math_operations 

print(math_operations.add(5, 3))  # Output: 8 

print(math_operations.subtract(5, 3))  # Output: 2 


Exploring Built-in Modules

Python comes with a rich set of built-in modules that provide a wide range of functionalities, from mathematical operations to file I/O and more. Here’s a list of some commonly used built-in modules and their uses: 


math module

The math module in Python offers a collection of functions designed for executing various mathematical computations. These functions cover a wide range of mathematical operations, including basic arithmetic, trigonometry, logarithms, and more. Below is an overview of some commonly used functions available in the math module. 


Basic Arithmetic Functions


math.ceil(x)

Returns the smallest integer value greater than or equal to x. 

import math 

print(math.ceil(4.3))  # Output: 5 

print(math.ceil(-4.3))  # Output: -4 

math.floor(x)

Returns the largest integer value less than or equal to x. 

import math 

print(math.floor(4.7))  # Output: 4 

print(math.floor(-4.7))  # Output: -5 

math.trunc(x)

Returns the truncated integer value of x (removes the decimal part). 

import math 

print(math.trunc(4.9))  # Output: 4 

print(math.trunc(-4.9))  # Output: -4 


Trigonometric Functions


math.sin(x)

Returns the sine of x (in radians). 

import math 

print(math.sin(math.pi/2))  # Output: 1.0 

math.cos(x)

Returns the cosine of x (in radians). 

import math 

print(math.cos(0))  # Output: 1.0 

math.tan(x)

Returns the tangent of x (in radians). 

import math 

print(math.tan(math.pi/4))  # Output: 0.9999999999999999


Exponential and Logarithmic Functions


math.exp(x)

Returns the exponential of x (e^x). 

import math 

print(math.exp(1))  # Output: 2.718281828459045 

math.log(x[, base])

Returns the natural logarithm of x (base e). Optionally, you can specify the base for the logarithm. 

import math 

print(math.log(2))  # Output: 0.6931471805599453 

print(math.log(8, 2))  # Output: 3.0 

math.sqrt(x)

Returns the square root of x. 

import math 

print(math.sqrt(16))  # Output: 4.0 


Constants


math.pi

A mathematical constant representing π (pi). 

import math 

print(math.pi)  # Output: 3.141592653589793 

math.e

A mathematical constant representing the base of natural logarithms, approximately equal to 2.71828. 

import math 

print(math.e)  # Output: 2.718281828459045 

math.inf

A floating-point representation of positive infinity. 

import math 

print(math.inf)  # Output: inf 

math.nan

A floating-point representation of NaN (Not a Number). 

import math 

print(math.nan)  # Output: nan 

These are just a few examples of the functions available in the math module.  


datetime module

The datetime module in Python provides functionalities for managing dates and times. It offers various functionalities for creating, formatting, and performing arithmetic operations on dates and times. Below is an in-depth look at the datetime module, focusing on the datetime class and its methods. 


datetime class

The datetime class in the datetime module represents a specific point in time with both date and time components. It is a combination of a date object and a time object. 


Creating datetime objects

You can create a datetime object using the datetime class constructor, which takes year, month, day, hour, minute, second, microsecond, and timezone information as arguments. 

from datetime import datetime 

# Create a datetime object for a specific date and time 

dt = datetime(2024, 4, 21, 12, 30, 45) 

print(dt)  # Output: 2024-04-21 12:30:45 


Getting Current Date and Time

The datetime.now() method returns the current local date and time. 

from datetime import datetime 

current_dt = datetime.now() 

print(current_dt)  # Output: Current local date and time 


Getting Date and Time Components

You can access individual components of a datetime object, such as year, month, day, hour, minute, second, and microsecond. 

from datetime import datetime 

dt = datetime.now() 

print(f"Year: {dt.year}") 

print(f"Month: {dt.month}") 

print(f"Day: {dt.day}") 

print(f"Hour: {dt.hour}") 

print(f"Minute: {dt.minute}") 

print(f"Second: {dt.second}") 

print(f"Microsecond: {dt.microsecond}") 


datetime class methods


date()

The date() method returns a date object with the same year, month, and day components as the datetime object. 

from datetime import datetime 

dt = datetime.now() 

date_only = dt.date() 

print(date_only)  # Output: YYYY-MM-DD 

time()

The time() method returns a time object with the same hour, minute, second, and microsecond components as the datetime object. 

from datetime import datetime 

dt = datetime.now() 

time_only = dt.time() 

print(time_only)  # Output: HH:MM:SS.microsecond 

strftime()

The strftime() method formats the datetime object as a string according to a specified format. 

from datetime import datetime 

dt = datetime.now() 

formatted_dt = dt.strftime("%Y-%m-%d %H:%M:%S")   

print(formatted_dt)  # Output: YYYY-MM-DD HH:MM:SS 

strptime()

The strptime() method creates a datetime object from a string representing a date and time, given a corresponding format string.  

from datetime import datetime  

date_str = "2024-04-21 12:30:45"  

dt = datetime.strptime(date_str, "%Y-%m-%d %H:%M:%S")  

print(dt)  # Output: 2024-04-21 12:30:45    


Arithmetic Operations

You can perform arithmetic operations on datetime objects to calculate time differences or add/subtract time intervals.  

from datetime import datetime, timedelta  

dt1 = datetime(2024, 4, 21)  

dt2 = datetime(2024, 4, 25)  

# Calculate the difference between two dates  

delta = dt2 - dt1  

print(delta.days)  # Output: 4  

# Add a time interval to a datetime object  

new_dt = dt1 + timedelta(days=10)  

print(new_dt)  # Output: 2024-05-01 00:00:00  


os module

The os module in Python offers tools for interacting with the operating system. It offers a range of functions for performing file and directory operations, accessing environment variables, and executing system commands. Below are some of the key functionalities provided by the os module:  


File and Directory Operations


Checking if a File or Folder Exists

You can use the os.path.exists() function to check if a file or directory exists at a given path.  

import os  
  
file_path = 'example.txt'  

if os.path.exists(file_path):  
    print(f"{file_path} exists.")  

else:  
    print(f"{file_path} does not exist.")    

Creating and Removing Directories

The os.mkdir() and os.rmdir() functions are used to create and remove directories, respectively.  

import os  

# Create a directory  

os.mkdir('my_directory')  

# Remove a directory  

os.rmdir('my_directory')  

Listing Files and Directories

You can use the os.listdir() function to get a list of all files and directories in a given directory.  

import os  

files = os.listdir('.')  

for file in files:  
    print(file)  


Operating System Information


Getting Current Working Directory

The os.getcwd() function provides the current working directory as a string. 

import os  

cwd = os.getcwd()  

print(f"Current working directory: {cwd}")  

Changing Current Working Directory

The os.chdir() function allows you to change the current working directory.  

import os  

os.chdir('/path/to/directory')  

print(f"Current working directory changed to {os.getcwd()}")  

Platform Information

The os.name attribute provides the name of the operating system dependent module imported. The os.uname() function returns information identifying the current operating system.  

import os  

print(f"OS name: {os.name}")  

if os.name == 'posix':  

    print(f"Platform: {os.uname()}")  
  


Environment Variables


Accessing Environment Variables

The os.environ dictionary provides access to the environment variables of the system.  

import os  

# Accessing the PATH environment variable  
path = os.environ.get('PATH')  

print(f"PATH: {path}")  


System Commands


Running System Commands

The os.system() function allows you to execute shell commands.  

import os  

# Run the 'ls' command (Unix/Linux)  

os.system('ls')  

# Run the 'dir' command (Windows)  

os.system('dir')  


File and Path Operations


Path Manipulation

The os.path module provides functions for manipulating paths and checking path-related information.  

import os  

# Joining paths  

path = os.path.join('dir1', 'dir2', 'file.txt')  

print(f"Joined path: {path}")  

# Getting the basename and dirname  

print(f"Basename: {os.path.basename(path)}")  

print(f"Dirname: {os.path.dirname(path)}")  

# Splitting the extension  

print(f"Splitext: {os.path.splitext(path)}")  


sys module

The sys module provides access to some variables used or maintained by the interpreter and to functions that interact with the interpreter.  

import sys  

print(sys.platform)  # Output: linux  


random module

The main function of the random module is to produce random numbers, sequences, and selections. Whether you need to simulate random events, shuffle data, or generate cryptographic keys, the random module offers a wide range of functionalities to meet your needs.  


Generating Random Numbers

One of the primary purposes of the random module is to generate random numbers. The random.randint() function is commonly used to generate a random integer within a specified range, inclusive of both endpoints.  

import random  

random_number = random.randint(1, 10)  

print(random_number)  # Output: a random integer between 1 and 10    


Generating Random Floats

In addition to integers, the random module also allows you to generate random floating-point numbers using the random.uniform() function.  

import random  

random_float = random.uniform(1.0, 10.0)  

print(random_float)  # Output: a random float between 1.0 and 10.0  


Generating Random Sequences

The random module provides functions for generating random sequences, such as lists, using the random.sample() function.  

import random  

random_list = random.sample(range(1, 10), 3)  

print(random_list)  # Output: a list of 3 unique random numbers between 1 and 10  


Shuffling Sequences

The random module also offers the random.shuffle() function, which allows you to shuffle the elements of a sequence in place.  

import random  

my_list = [1, 2, 3, 4, 5]  

random.shuffle(my_list)   

print(my_list)  # Output: a shuffled version of my_list  


Choosing Random Elements

If you need to select random elements from a sequence without replacement, you can use the random.choice() function.  

import random   

my_list = ['apple', 'banana', 'cherry', 'mango']  

random_fruit = random.choice(my_list)  

print(random_fruit)  # Output: a random fruit from my_list  


Seed for Reproducibility

For applications where reproducibility is essential, the random module allows you to set a seed using the random.seed() function. Setting a seed ensures that the sequence of random numbers generated is the same every time the code is executed.  

import random  

random.seed(42)   

print(random.randint(1, 10)) 

random.seed(42)   

print(random.randint(1, 10)) 


json module

The json module in Python offers a robust set of functions designed to handle the encoding and decoding of JSON (JavaScript Object Notation) data. JSON is a lightweight data interchange format that is widely used for transmitting data between a server and a web application, as well as for storing configuration data and structured data.  


Encoding JSON Data

When it comes to encoding JSON data, the json module provides the json.dumps() function, which takes a Python object as input and returns a JSON-formatted string representation of that object. This function is particularly useful when you need to serialize Python objects into a format that can be easily transmitted or stored.  

import json  

data = {"name": "John", "age": 30}  

json_data = json.dumps(data)  

print(json_data)  # Output: {"name": "John", "age": 30}  


Handling JSON Files

The json module also provides functions for reading and writing JSON data directly from and to files. The json.dump() function can be used to write JSON data to a file, while the json.load() function can be used to read JSON data from a file. 

import json 

# Writing JSON data to a file 

data = {"name": "John", "age": 30} 

with open('data.json', 'w') as f: 
    json.dump(data, f) 


# Reading JSON data from a file 

with open('data.json', 'r') as f: 
    loaded_data = json.load(f) 

print(loaded_data)  # Output: {'name': 'John', 'age': 30} 


Decoding JSON Data

json.loads() is a Python function used to decode JSON (JavaScript Object Notation) formatted strings into Python objects.

import json

# JSON string representing a dictionary
json_string = '{"name": "John", "age": 30, "city": "New York"}'

# Using json.loads() to decode the JSON string into a Python dictionary
python_dict = json.loads(json_string)

# Printing the Python dictionary
print(python_dict)


re module

The re module in Python provides a comprehensive set of tools and functionalities specifically designed for working with regular expressions. Regular expressions, often abbreviated as regex or regexp, are powerful patterns used to match, search, and manipulate text based on certain rules or patterns. With the re module, you can perform tasks such as searching for specific patterns within strings, replacing text based on patterns, and validating strings against specific criteria defined by regular expressions. This module enables you to harness the full power of regular expressions, making text processing tasks more efficient and flexible in Python. 

import re 

pattern = r'\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b' 

text = "Contact us at email@example.com" 

match = re.search(pattern, text, re.IGNORECASE) 

print(match.group())  # Output: email@example.com 


To validate Aadhar Number Pattern:

import re

aadhar_number = "1122 3344 5566"

# ^ asserts the start of the string.
# \d{4} matches exactly 4 digits.
# \s? matches an optional space character.
# $ asserts the end of the string.

if re.match(r"^\d{4}\s?\d{4}\s?\d{4}$", aadhar_number):
    print("Valid Aadhar Number")
else:
    print("Invalid Aadhar Number")


To validate PAN Number Pattern:

import re

# ^ asserts the start of the string.
# [A-Z]{5} matches exactly 5 uppercase alphabetic characters.
# [0-9]{4} matches exactly 4 digits.
# [A-Z] matches exactly 1 uppercase alphabetic character.
# $ asserts the end of the string.

pan_number = "ABCDE1234F"
if re.match(r"^[A-Z]{5}[0-9]{4}[A-Z]$", pan_number):
    print("Valid PAN Number")
else:
    print("Invalid PAN Number")


Conclusion

Modules in Python offer a powerful way to organize and reuse code. Whether you are creating your own modules or leveraging the built-in modules provided by Python, understanding how to work with modules can greatly enhance your Python programming experience. So, go ahead, create your own modules, and explore the vast array of built-in modules to unlock the full potential of Python.

Happy Coding!

Most Recent Posts

Copyright © 2024 - All Rights Reserved By Infronx